Title of Unit：Let＇s think about how to calculate（Multiplication and division with decimal numbers）Grade 4

o Instructional plan（2 lessons）

－$\quad 1$ st lesson：decimal numberxwhole number（this lesson）
－ 2 nd lesson：decimal number \div whole number －About this unit

In the textbook，the unit＂Let＇s think about how to calculate＂is placed before the unit＂multiplication and division with decimal numbers＂．

Students learned that decimal numbers are－－the numbers to express fractional parts of the quantities which do not fill the unit quantity，and can be added and subtracted like whole numbers in the $3^{\text {rd }}$ grade．In the $4^{\text {th }}$ grade，they deepened their understanding of numbers by learning decimal numbers can be expressed in the same way as whole numbers and the relative size of the numbers．

（1）Idea about posing the problem

In this unit，students understand the meaning of 1.2×3 ， $5.4 \div 3$ and think about how to calculate using the property of multiplication and the structure of decimal numbers．This unit is designed for the students to understand that they can make mathematical expressions when multiplicand （dividend）is decimal numbers in the same way as whole number．In order to do so，the problem will be presented by using for decimal part，and applying a whole number first and then applying the decimal number．
（2）Idea about solving the problem on their own
When students think how to calculate，it＇s important to encourage them to use figures，tape diagrams，and expressions with words based on what they learned previously．For that purpose，I will allow them to develop an outlook as the whole class and discuss which method they learned can be utilized．If there are students who cannot come up with the idea，I will support them by providing them the hints which linked with items which they previously learned in the guidance between desks．
（3）Idea about the students＇presentation and discussion
As this unit provides good opportunity for students to explain their own idea，I will separate them into students who will present expressions and those who will explain with their words so that as many students as possible can provide their explanations．

During the discussion，I＇d like to pose the questions that encourage the students to notice the differences between the ideas and find characteristic，commonality，and advantages of each idea．
o Examples of anticipated students＇responses and instructional supports
${ }^{(1)}$ Students who calculate by changing multiplication into addition．
$1.2 \times 3=1.2+1.2+1.2=3.6 \quad$ Answer 3．6L
\rightarrow Admit that they reach an answer and remind them that this time they think＂how to multiply＂．
Encourage them to express the problem situation in a diagram，instead of thinking of expression．Then，let them notice it would be easier to calculate if they change L into dL ，because the decimal number becomes a whole number． Or remind them of what they learned in＂large numbers＂：if they think in terms of 100million as the unit，they can calculate 300 million +500 million as $3+5$ and the answer is 800 milion so that they can apply it to decimal numbers． （2）Calculate by changing L into dL
$1.2 \mathrm{~L}=12 \mathrm{dL} 12 \times 3=36$
36dL＝3．6L Answer 3．6L
（3）Calculate in terms of 0.1 as the unit to make it a whole number
1.2×3
$\downarrow 0.1$ as the unit
$12 \times 3=36$
$\downarrow 0.1$ as the unit
3．6 Answer 3．6L
\rightarrow Admit they think of the numbers in terms of 0.1 as the unit in both．Remind them of the structure of decimal numbers （10 times of 1.2 is 12）and the property of multiplication（if you make the multiplicand 10 times as much，the answer will be made 10 times as much）and allow them to think whether the property can be used．
（4）Calculate by making it 10 times as much to make it a whole number
$1.2 \times 3=$
$\downarrow \times 10 \uparrow \div 10$
$12 \times 3=36$ Answer＿3．6L

This work is licensed under the Creative Commons Attribution－NonCommercial－ShareAlike 3．0 Unported License．To view a copy of this license，visit http：／／creativecommons．org／licenses／by－nc－sa／3．0／or send a letter to Creative Commons， 444 Castro Street，Suite 900 ， Mountain View，California，94041，USA．

About the lesson（1／2）

Objective：Explain how to calculate 1.2×3 by using what students previously learned，making reasoning clear，and using diagrams or mathematical expressions

Evaluation：Did the students think about 1.2×3 based on the calculation with whole numbers and explain it？

This work is licensed under the Creative Commons Attribution－NonCommercial－ShareAlike 3．0 Unported License．To view a copy of this license，visit http：／／creativecommons．org／licenses／by－nc－sa／3．0／or send a letter to Creative Commons， 444 Castro Street，Suite 900 ， Mountain View，California，94041，USA．

Title of Unit: Let's think about how to calculate (Multiplication and division with decimal numbers) Grade 4 o Instruction plan (2 lessons)

- 1 st lesson: decimal numberxwhole number
- $\quad 2$ nd lesson: decimal number \div whole number (this lesson)
o About this unit
In the previous lesson, students learned that they can calculate decimal numberxwhole number by changing the decimal number into a whole number by thinking in terms of 0.1 as the unit, or making it 10 times as much. This unit is designed for the students to notice they can calculate if the decimal number is changed into a whole number through the study of multiplication with decimal numbers, and think what kind of methods of calculation can be used in the case of division.

In the $5^{\text {th }}$ grade, it will develop into leaning whole number \times decimal number, decimal number \times decimal number, whole number \div decimal number, and decimal number \div decimal number. As they will come down to what students learned in this unit, it is important for the students to learn firmly the way of thinking for changing decimal numbers into whole numbers.

(1) Idea about posing the problem

I'd like students to be aware that the mathematical expression, decimal number \div whole number holds true by presenting the problem statement using , and expressing it in a mathematical expression with words or a tape diagram. Also I'd like them to think as they calculated whole numberxdecimal number by changing decimal numbers into whole numbers in the previous lesson, they will be able to solve the problem with the same method. For that purpose, it is important to allow students to check what they previously learned any time.
(2) Idea about solving problem on their own

When students think how to calculate, it is important to encourage them to think based on what they learned previously. Students will be allowed to check what they learned any time by looking at learned items which are drawn on paper and displayed in the classroom, or by looking back what they wrote on their notebooks. I'd like them to remind that they could calculate by changing decimal numbers into whole numbers and encourage them to think they can use the same method.
(3) Idea about the student's presentation and discussion

As this unit provides good opportunity for students to explain their own idea, I'd like as many students as possible to provide their explanations. During the discussion, as the idea of changing decimal numbers into whole numbers which students learned in the previous lesson is also important for this lesson, I'd like the students who had failed to reach the idea to be aware of it this time. For that purpose, if there are remarks about it, I'd like to take them up and make them distinguished on blackboard.
oExamples of anticipated students' responses and instructional supports
(1)If it is expressed in a diagram, the volume of a bottle is more than 1 L . So first, divide it into 1 L for each bottle and then divide the remaining 2.4 L into 3 bottles.
\rightarrow Admit they understood the answer is more than 1L as they expressed it in a diagram. Let them notice it would be easier to calculate if they change L into dL , because the decimal number becomes a whole number. Or remind them of what they learned in "large numbers": if they think in terms of 100 million as the unit, they can calculate 300 million +500 million as $3+5$ and the answer is 800 milion so that they can apply it to decimal numbers.
(2) As 5.4 L equals $54 \mathrm{dL}, 54 \div 3=18$

18 dL equals 1.8 L . Answer 1.8 L
(3)As 5.4 L is made of fifty four 0.1 L ,
$54 \div 3=18$
1.8 L is made of eighteen 0.1 L . Answer 1.8 L
\rightarrow Admit they think of the numbers in terms of 0.1 as the unit in both. Remind them of structure of decimal numbers (10times of 5.4 is 54) and the property of division (if you make the dividend 10 times as much, the quotient will be made 10 times as much) and allow them to think whether the property can be used
(4)If I make 5.410 times as much, it becomes $54.54 \div 3=18$

As the dividend was made 10 times as much and quotient was 18 , the quotient should be divided by 10 to have the answer. The answer is 1.8 . Answer 1.8L

About the lesson（2／2）

Objective：Explain how to calculate $5.4 \div 3$ by using what students previously learned，making reasoning clear，using diagrams or mathematical expressions

Can be calculated when decimal numbers are changed into whole numbers，same as multiplication with decimal numbers．
Can be calculated with decimal numbers when the property of multiplication／division is used．

Evaluation：Did the students think about how to calculate $5.4 \div 3$ based on the calculation with whole numbers and explain it？

This work is licensed under the Creative Commons Attribution－NonCommercial－ShareAlike 3．0 Unported License．To view a copy of this license，visit http：／／creativecommons．org／licenses／by－nc－sa／3．0／or send a letter to Creative Commons， 444 Castro Street，Suite 900 ， Mountain View，California，94041，USA．

